Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Article in English | MEDLINE | ID: mdl-38698904

ABSTRACT

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Subject(s)
Babesia , Camelus , Ehrlichia , Theileria , Ticks , Animals , Kenya/epidemiology , Camelus/parasitology , Camelus/microbiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Coxiella/isolation & purification , Coxiella/genetics , Hemolymph/microbiology , Hemolymph/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology
2.
Bull Entomol Res ; 114(2): 210-229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38444234

ABSTRACT

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.


Subject(s)
Hemiptera , Salivary Glands , Transcriptome , Animals , Hemiptera/microbiology , Hemiptera/genetics , Salivary Glands/microbiology , Salivary Glands/metabolism , Plant Diseases/microbiology , Citrus/microbiology , Liberibacter
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674613

ABSTRACT

The ectoparasite Ixodes ricinus is an important vector for many tick-borne diseases (TBD) in the northern hemisphere, such as Lyme borreliosis, rickettsiosis, human granulocytic anaplasmosis, or tick-borne encephalitis virus. As climate change will lead to rising temperatures in the next years, we expect an increase in tick activity, tick population, and thus in the spread of TBD. Consequently, it has never been more critical to understand relationships within the microbial communities in ticks that might contribute to the tick's fitness and the occurrence of TBD. Therefore, we analyzed the microbiota in different tick tissues such as midgut, salivary glands, and residual tick material, as well as the microbiota in complete Ixodes ricinus ticks using 16S rRNA gene amplicon sequencing. By using a newly developed DNA extraction protocol for tick tissue samples and a self-designed mock community, we were able to detect endosymbionts and pathogens that have been described in the literature previously. Further, this study displayed the usefulness of including a mock community during bioinformatic analysis to identify essential bacteria within the tick.


Subject(s)
Ixodes , Lyme Disease , Microbiota , Tick-Borne Diseases , Animals , Female , Humans , Ixodes/genetics , RNA, Ribosomal, 16S/genetics , Salivary Glands/microbiology
4.
Virology ; 567: 47-56, 2022 02.
Article in English | MEDLINE | ID: mdl-34998225

ABSTRACT

Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.


Subject(s)
Citrus/microbiology , Flavivirus/genetics , Hemiptera/virology , Insect Vectors/virology , Liberibacter/genetics , Nymph/virology , Animals , DNA, Bacterial/genetics , Female , Hemiptera/microbiology , Insect Vectors/microbiology , Intestines/microbiology , Intestines/virology , Liberibacter/pathogenicity , Nymph/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , RNA, Viral/genetics , Salivary Glands/microbiology , Salivary Glands/virology , Symbiosis/physiology
5.
J Med Entomol ; 58(4): 1926-1930, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33855354

ABSTRACT

The relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae are each maintained and transmitted in nature by their specific tick vectors, Ornithodoros hermsi Wheeler (Acari: Argasidae) and Ornithodoros turicata (Duges), respectively. The basis for this spirochete and vector specificity is not known, but persistent colonization of spirochetes in the tick's salivary glands is presumed to be essential for transmission by these long-lived ticks that feed in only minutes on their warm-blooded hosts. To examine this hypothesis further, cohorts of O. hermsi and O. turicata were infected with B. hermsii and examined 7-260 d later for infection in their midgut, salivary glands, and synganglion. While the midgut from all ticks of both species at all time points examined were infected with spirochetes, the salivary glands of only O. hermsi remained persistently infected. The salivary glands of O. turicata were susceptible to an early transient infection. However, no spirochetes were observed in these tissues beyond the first 32 d after acquisition. Ticks of both species were fed on mice 112 d after they acquired spirochetes and only those mice fed upon by O. hermsi became infected. Thus, the vector competency for B. hermsii displayed by O. hermsi but not O. turicata lies, in part, in the persistent infection of the salivary glands of the former but not the latter species of tick. The genetic and biochemical mechanisms supporting this spirochete and vector specificity remain to be identified.


Subject(s)
Borrelia , Host Specificity , Ornithodoros/microbiology , Relapsing Fever/transmission , Animals , Bacterial Zoonoses , Humans , Mice , Rodent Diseases/transmission , Salivary Glands/microbiology , Vector Borne Diseases/transmission
6.
Pathog Dis ; 79(5)2021 04 22.
Article in English | MEDLINE | ID: mdl-33770162

ABSTRACT

The cat flea, Ctenocephalides felis, is an arthropod vector capable of transmitting several human pathogens including Rickettsia species. Earlier studies identified Rickettsia felis in the salivary glands of the cat flea and transmission of rickettsiae during arthropod feeding. The saliva of hematophagous insects contains multiple biomolecules with anticlotting, vasodilatory and immunomodulatory activities. Notably, the exact role of salivary factors in the molecular interaction between flea-borne rickettsiae and their insect host is still largely unknown. To determine if R. felis modulates gene expression in the cat flea salivary glands, cat fleas were infected with R. felis and transcription patterns of selected salivary gland-derived factors, including antimicrobial peptides and flea-specific antigens, were assessed. Salivary glands were microdissected from infected and control cat fleas at different time points after exposure and total RNA was extracted and subjected to reverse-transcriptase quantitative PCR for gene expression analysis. During the experimental 10-day feeding period, a dynamic change in gene expression of immunity-related transcripts and salivary antigens between the two experimental groups was detected. The data indicated that defensin-2 (Cf-726), glycine-rich antimicrobial peptide (Cf-83), salivary antigens (Cf-169 and Cf-65) and deorphanized peptide (Cf-75) are flea-derived factors responsive to rickettsial infection.


Subject(s)
Ctenocephalides , Rickettsia Infections , Rickettsia felis , Salivary Glands , Animals , Antimicrobial Peptides/analysis , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Ctenocephalides/genetics , Ctenocephalides/metabolism , Ctenocephalides/microbiology , Female , Male , Rickettsia Infections/genetics , Rickettsia Infections/metabolism , Rickettsia Infections/microbiology , Rickettsia felis/genetics , Rickettsia felis/metabolism , Rickettsia felis/pathogenicity , Salivary Glands/metabolism , Salivary Glands/microbiology , Transcriptome/genetics
7.
Front Immunol ; 12: 625993, 2021.
Article in English | MEDLINE | ID: mdl-33643313

ABSTRACT

Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.


Subject(s)
Adaptive Immunity , Immune Tolerance , Immunity, Innate , Salivary Glands/immunology , Skin/immunology , Tick Bites/immunology , Tick-Borne Diseases/immunology , Ticks/immunology , Animals , Host-Pathogen Interactions , Humans , Salivary Glands/microbiology , Salivary Glands/virology , Skin/microbiology , Skin/virology , Tick Bites/microbiology , Tick Bites/virology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/virology , Ticks/microbiology , Ticks/virology
8.
NPJ Biofilms Microbiomes ; 7(1): 21, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707430

ABSTRACT

Salivary gland epithelial cells (SGECs) have been implicated in the pathogenesis of Sjögren's syndrome due to aberrant antigen-presentation function. This study examined the hypothesis that oral dysbiosis modulates the antigen-presentation function of SGECs, which regulates CD4 T cell proliferation in primary Sjögren's syndrome (pSS). Saliva samples from 8 pSS patients and 16 healthy subjects were analyzed for bacterial 16S ribosomal DNA. As a result, 39 differentially abundant taxa were identified. Among them, the phylum Proteobacteria comprised 21 taxa, and this phylum was mostly enriched in the healthy controls. The proteobacterium Haemophilus parainfluenzae was enriched in the healthy controls, with the greatest effect size at the species level. Treatment of A253 cells in vitro with H. parainfluenzae upregulated PD-L1 expression, and H. parainfluenzae-pretreated A253 cells suppressed CD4 T cell proliferation. The suppression was partially reversed by PD-L1 blockade. Among low-grade xerostomia patients, salivary abundance of H. parainfluenzae decreased in pSS patients compared to that in non-pSS sicca patients. Our findings suggest that H. parainfluenzae may be an immunomodulatory commensal bacterium in pSS.


Subject(s)
Dysbiosis/diagnosis , Haemophilus parainfluenzae/immunology , RNA, Ribosomal, 16S/genetics , Saliva/microbiology , Salivary Glands/cytology , Sequence Analysis, DNA/methods , Sjogren's Syndrome/microbiology , Aged , Antigen Presentation , CD4-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cell Line , Cell Proliferation , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Epithelial Cells/cytology , Epithelial Cells/immunology , Female , Humans , Male , Middle Aged , Phylogeny , Salivary Glands/immunology , Salivary Glands/microbiology , Sjogren's Syndrome/immunology
9.
Ticks Tick Borne Dis ; 12(3): 101646, 2021 05.
Article in English | MEDLINE | ID: mdl-33508537

ABSTRACT

Heartwater is a non-contagious tick-borne disease of domestic and wild ruminants. Data regarding the complex processes involved during pathogen-vector-host interaction during Ehrlichia ruminantium infection is lacking and could be improved with knowledge associated with gene expression changes in both the pathogen and the host. Thus, in the current study, we aimed to identify E. ruminantium genes that are up-regulated when the pathogen enters the host and before the disease is established. Identification of such genes/proteins may aid in future vaccine development strategies against heartwater. RNA-sequencing was used to identify E. ruminantium genes that were exclusively expressed at the tick bite site in sheep skin biopsies (SB) and in adult tick salivary glands (SG). RNA was extracted from pooled samples of the SB or SG collected at different time points during tick attachment and prior to disease manifestation. Ribosomal RNA (rRNA) was removed and the samples were sequenced. Several E. ruminantium genes were highly expressed in all the samples while others were exclusively expressed in each. It was concluded that E. ruminantium genes that were exclusively expressed in the SB or both SB and SG when compared to the transcriptome datasets from bovine elementary bodies (BovEBs) from cell culture may be considered as early antigenic targets of host immunity. In silico immunogenic epitope prediction analysis and preliminary characterization of selected genes in vitro using ELIspot assay showed that they could possibly be ideal targets for future vaccine development against heartwater, however, further epitope characterization is still required.


Subject(s)
Amblyomma/microbiology , Arthropod Vectors/microbiology , Ehrlichia ruminantium/genetics , Host-Pathogen Interactions , Salivary Glands/microbiology , Transcriptome/genetics , Amblyomma/growth & development , Animals , Female , Gene Expression Profiling/veterinary , Heartwater Disease/microbiology , Male , Nymph/growth & development , Nymph/physiology , Sheep , Sheep Diseases/microbiology , Sheep, Domestic , Tick Bites/veterinary
10.
Parasite Immunol ; 43(5): e12816, 2021 05.
Article in English | MEDLINE | ID: mdl-33368329

ABSTRACT

The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.


Subject(s)
Arachnid Vectors/microbiology , Borrelia burgdorferi/physiology , Host Microbial Interactions/physiology , Ixodes/microbiology , Lyme Disease/microbiology , Mammals/microbiology , Animals , Arachnid Vectors/immunology , Borrelia burgdorferi/genetics , Gene Expression , Humans , Ixodes/immunology , Lyme Disease/epidemiology , Lyme Disease/transmission , Mammals/blood , Mammals/parasitology , Microbiota , Nymph/microbiology , Salivary Glands/microbiology
11.
Sci Rep ; 10(1): 20061, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208766

ABSTRACT

Ixodes ricinus is the vector for Borrelia afzelii, the predominant cause of Lyme borreliosis in Europe, whereas Ixodes scapularis is the vector for Borrelia burgdorferi in the USA. Transcription of several I. scapularis genes changes in the presence of B. burgdorferi and contributes to successful infection. To what extend B. afzelii influences gene expression in I. ricinus salivary glands is largely unknown. Therefore, we measured expression of uninfected vs. infected tick salivary gland genes during tick feeding using Massive Analysis of cDNA Ends (MACE) and RNAseq, quantifying 26.179 unique transcripts. While tick feeding was the main differentiator, B. afzelii infection significantly affected expression of hundreds of transcripts, including 465 transcripts after 24 h of tick feeding. Validation of the top-20 B. afzelii-upregulated transcripts at 24 h of tick feeding in ten biological genetic distinct replicates showed that expression varied extensively. Three transcripts could be validated, a basic tail protein, a lipocalin and an ixodegrin, and might be involved in B. afzelii transmission. However, vaccination with recombinant forms of these proteins only marginally altered B. afzelii infection in I. ricinus-challenged mice for one of the proteins. Collectively, our data show that identification of tick salivary genes upregulated in the presence of pathogens could serve to identify potential pathogen-blocking vaccine candidates.


Subject(s)
Arachnid Vectors/microbiology , Arthropod Proteins/genetics , Bacterial Vaccines/administration & dosage , Lyme Disease/genetics , Salivary Glands/microbiology , Tick Infestations/genetics , Transcriptome , Animals , Borrelia burgdorferi Group/drug effects , Female , Ixodes/drug effects , Lyme Disease/microbiology , Lyme Disease/prevention & control , Lyme Disease/transmission , Mice , Tick Infestations/microbiology , Tick Infestations/prevention & control , Tick Infestations/transmission
12.
PLoS One ; 15(10): e0239089, 2020.
Article in English | MEDLINE | ID: mdl-33044963

ABSTRACT

Tick-borne relapsing fever is an infectious disease caused by Borrelia species and are primarily transmitted by Ornithodoros ticks. Prior work indicated that in vitro cultivated spirochetes remain infectious to mice by needle inoculation; however, the impact of laboratory propagation on the pathogens natural life cycle has not been determined. Our current study assessed the effect of serial cultivation on the natural tick-mammalian transmission cycle. First, we evaluated genomic DNA profiles from B. turicatae grown to 30, 60, 120, and 300 generations, and these spirochetes were used to needle inoculate mice. Uninfected nymphal ticks were fed on these mice and acquisition, transstadial maintenance, and subsequent transmission after tick bite was determined. Infection frequencies in mice that were fed upon by ticks colonized with B. turicatae grown to 30, 60, and 120 generations were 100%, 100%, and 30%, respectively. Successful infection of mice by tick feeding was not detected after 120 generations. Quantifying B. turicatae in tick tissues indicated that by 300 generations they no longer colonized the vector. The results indicate that in vitro cultivation significantly affects the establishment of tick colonization and murine infection. This work provides a foundation for the identification of essential genetic elements in the tick-mammalian infectious cycle.


Subject(s)
Arachnid Vectors/microbiology , Borrelia/growth & development , Ornithodoros/microbiology , Relapsing Fever/microbiology , Animals , Bacteriological Techniques , Borrelia/genetics , Borrelia/pathogenicity , DNA, Bacterial/genetics , Digestive System/microbiology , Female , Genome, Bacterial , Genomic Instability , Humans , In Vitro Techniques , Mice , Mice, Inbred ICR , Relapsing Fever/transmission , Salivary Glands/microbiology
13.
Sci Rep ; 10(1): 15987, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994495

ABSTRACT

Neoehrlichia mikurensis is an emerging tick-borne intracellular pathogen causing neoehrlichiosis. Its putative morphology was described in mammalian, but not in tick cells. In this study, we aim to show the presumptive morphology of N. mikurensis in salivary glands of engorged females of Ixodes ricinus. To accomplish this, we collected I. ricinus ticks in a locality with a high N. mikurensis prevalence, allowed them to feed in the artificial in vitro feeding system, dissected salivary glands and screened them by PCR for N. mikurensis and related bacteria. Ultrathin sections of salivary glands positive for N. mikurensis but negative for other pathogens were prepared and examined by transmission electron microscopy. We observed two individual organisms strongly resembling N. mikurensis in mammalian cells as described previously. Both bacteria were of ovoid shape between 0.5-0.8 µm surrounded by the inner cytoplasmic and the rippled outer membrane separated by an irregular electron-lucent periplasmic space. Detection of N. mikurensis in salivary glands of I. ricinus suggests that this bacterium uses the "salivary pathway of transmission" to infect mammals.


Subject(s)
Anaplasmataceae/ultrastructure , Ixodes/physiology , Anaplasmataceae/genetics , Anaplasmataceae/isolation & purification , Animal Feed , Animals , DNA, Bacterial/genetics , Female , Ixodes/microbiology , Microscopy, Electron, Transmission , Salivary Glands/microbiology
14.
Nat Rev Microbiol ; 18(10): 587-600, 2020 10.
Article in English | MEDLINE | ID: mdl-32651470

ABSTRACT

Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to vertebrate hosts by Ixodes spp. ticks. The spirochaete relies heavily on its arthropod host for basic metabolic functions and has developed complex interactions with ticks to successfully colonize, persist and, at the optimal time, exit the tick. For example, proteins shield spirochaetes from immune factors in the bloodmeal and facilitate the transition between vertebrate and arthropod environments. On infection, B. burgdorferi induces selected tick proteins that modulate the vector gut microbiota towards an environment that favours colonization by the spirochaete. Additionally, the recent sequencing of the Ixodes scapularis genome and characterization of tick immune defence pathways, such as the JAK-STAT, immune deficiency and cross-species interferon-γ pathways, have advanced our understanding of factors that are important for B. burgdorferi persistence in the tick. In this Review, we summarize interactions between B. burgdorferi and I. scapularis during infection, as well as interactions with tick gut and salivary gland proteins important for establishing infection and transmission to the vertebrate host.


Subject(s)
Arachnid Vectors/genetics , Arthropod Proteins/genetics , Borrelia burgdorferi/genetics , Host-Pathogen Interactions/genetics , Ixodes/genetics , Lyme Disease/transmission , Animals , Arachnid Vectors/metabolism , Arachnid Vectors/microbiology , Arthropod Proteins/metabolism , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/pathogenicity , Gene Expression Regulation , Genome , Humans , Intestines/microbiology , Intestines/pathology , Ixodes/metabolism , Ixodes/microbiology , Lyme Disease/microbiology , Lyme Disease/pathology , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Salivary Glands/metabolism , Salivary Glands/microbiology , Salivary Glands/pathology , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism , Signal Transduction
15.
Sci Rep ; 10(1): 4291, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152370

ABSTRACT

Phytoplasmas are transmitted by insect vectors in a persistent propagative manner; however, detailed movements and multiplication patterns of phytoplasmas within vectors remain elusive. In this study, spatiotemporal dynamics of onion yellows (OY) phytoplasma in its vector Macrosteles striifrons were investigated by immunohistochemistry-based 3D imaging, whole-mount fluorescence staining, and real-time quantitative PCR. The results indicated that OY phytoplasmas entered the anterior midgut epithelium by seven days after acquisition start (daas), then moved to visceral muscles surrounding the midgut and to the hemocoel at 14-21 daas; finally, OY phytoplasmas entered into type III cells of salivary glands at 21-28 daas. The anterior midgut of the alimentary canal and type III cells of salivary glands were identified as the major sites of OY phytoplasma infection. Fluorescence staining further revealed that OY phytoplasmas spread along the actin-based muscle fibers of visceral muscles and accumulated on the surfaces of salivary gland cells. This accumulation would be important for phytoplasma invasion into salivary glands, and thus for successful insect transmission. This study demonstrates the spatiotemporal dynamics of phytoplasmas in insect vectors. The findings from this study will aid in understanding of the underlying mechanism of insect-borne plant pathogen transmission.


Subject(s)
Digestive System/microbiology , Insect Vectors/microbiology , Insecta/physiology , Onions/microbiology , Phytoplasma/growth & development , Plant Diseases/microbiology , Salivary Glands/microbiology , Animals , Host-Pathogen Interactions , Insecta/microbiology , Phytoplasma/classification , Spatio-Temporal Analysis
16.
PLoS One ; 15(3): e0230667, 2020.
Article in English | MEDLINE | ID: mdl-32208441

ABSTRACT

Key events in the pathogenesis of SjÓ§gren syndrome (SS) include the change of salivary gland epithelial cells into antigen-presenting cell-like phenotypes and focal lymphocytic sialadenitis (FLS). However, what triggers these features in SS is unknown. Dysbiosis of the gut and oral microbiomes is a potential environmental factor in SS, but its connection to the etiopathogenesis of SS remains unclear. This study aimed to characterize the oral microbiota in SS and to investigate its potential role in the pathogenesis of SS. Oral bacterial communities were collected by whole mouthwash from control subjects (14 without oral dryness and 11 with dryness) and primary SS patients (8 without oral dryness and 17 with dryness) and were analyzed by pyrosequencing. The SS oral microbiota was characterized by an increased bacterial load and Shannon diversity. Through comparisons of control and SS in combined samples and then separately in non-dry and dry conditions, SS-associated taxa independent of dryness were identified. Three SS-associated species and 2 control species were selected and used to challenge human submandibular gland tumor (HSG) cells. Among the selected SS-associated bacterial species, Prevotella melaninogenica uniquely upregulated the expression of MHC molecules, CD80, and IFNλ in HSG cells. Concomitantly, P. melaninogenica efficiently invaded HSG cells. Sections of labial salivary gland (LSG) biopsies from 8 non-SS subjects and 15 SS patients were subjected to in situ hybridization using universal and P. melaninogenica-specific probes. Ductal cells and the areas of infiltration were heavily infected with bacteria in the LSGs with FLS. Collectively, dysbiotic oral microbiota may initiate the deregulation of SGECs and the IFN signature through bacterial invasion into ductal cells. These findings may provide new insights into the etiopathogenesis of SS.


Subject(s)
Microbiota , Salivary Glands/pathology , Sjogren's Syndrome/pathology , Aquaporins/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Bacterial Proteins/metabolism , Case-Control Studies , Cell Line, Tumor , Dysbiosis , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Humans , Interferons/metabolism , Prevotella melaninogenica/genetics , Prevotella melaninogenica/isolation & purification , Prevotella melaninogenica/pathogenicity , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Salivary Glands/microbiology , Sialadenitis/complications , Sialadenitis/microbiology , Sialadenitis/pathology , Sjogren's Syndrome/complications , Sjogren's Syndrome/microbiology
17.
Parasit Vectors ; 13(1): 105, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32103780

ABSTRACT

BACKGROUND: Anaplasma ovis is a gram-negative, tick-borne obligate intraerythrocytic pathogen, which causes ovine anaplasmosis in small ruminants worldwide. VirB10 of A. ovis is an integral component of the Type IV Secretion System (T4SS). The T4SS is used by bacteria to transfer DNA and/or proteins undeviatingly into the host cell to increase their virulence. To more thoroughly understand the interaction between A. ovis and Dermacentor silvarum, a vector containing the virb10 gene of A. ovis was used as a bait plasmid to screen interacting proteins from the cDNA library of the D. silvarum salivary gland using the yeast two-hybrid system. METHODS: The cDNA of the D. silvarum salivary gland was cloned into the pGADT7-SmaI vector (prey plasmid) to construct the yeast two-hybrid cDNA library. The virb10 gene was cloned into the pGBKT7 vector to generate a bait plasmid. Any gene auto-activation or toxicity effects in the yeast strain Y2HGold were excluded. The screening was performed by combining the bait and prey plasmids in yeast strains to identify positive preys. The positive preys were then sequenced, and the obtained sequences were subjected to further analyses using Gene Ontology, UniProt, SMART, and STRING. Additionally, the interaction between the bait and the prey was evaluated using the glutathione S-transferase (GST) pull-down assay. RESULTS: A total of two clones were obtained from the cDNA library using the yeast two-hybrid system, and the sequence analysis showed that both clones encoded the same large tegument protein, UL36. Furthermore, the proteins GST-UL36 and His-VirB10 were successfully expressed in vitro and the interaction between the two proteins was successfully demonstrated by the GST pull-down assay. CONCLUSIONS: To our knowledge, this study is the first to screen for D. silvarum salivary gland proteins that interact with A. ovis VirB10. The resulting candidate, UL36, is a multi-functional protein. Further investigations into the functionality of UL36 should be carried out, which might help in identifying novel prevention and treatment strategies for A. ovis infection. The present study provides a base for exploring and further understanding the interactions between A. ovis and D. silvarum.


Subject(s)
Anaplasma ovis/metabolism , Arthropod Proteins/metabolism , Bacterial Proteins/metabolism , Dermacentor/metabolism , Dermacentor/microbiology , Type IV Secretion Systems/metabolism , Anaplasma ovis/genetics , Animals , Arthropod Proteins/genetics , Bacterial Proteins/genetics , Dermacentor/genetics , Host-Parasite Interactions , Protein Binding , Salivary Glands/metabolism , Salivary Glands/microbiology , Two-Hybrid System Techniques , Type IV Secretion Systems/genetics
18.
Microbiologyopen ; 9(4): e994, 2020 04.
Article in English | MEDLINE | ID: mdl-31990149

ABSTRACT

In recent years, several studies have examined the gut microbiome of lepidopteran larvae and how factors such as host plant affect it, and in turn, how gut bacteria affect host plant responses to herbivory. In addition, other studies have detailed how secretions of the labial (salivary) glands can alter host plant defense responses. We examined the gut microbiome of the cabbage looper (Trichoplusia ni) feeding on collards (Brassica oleracea) and separately analyzed the microbiomes of various organs that open directly into the alimentary canal, including the labial glands, mandibular glands, and the Malpighian tubules. In this study, the gut microbiome of T. ni was found to be generally consistent with those of other lepidopteran larvae in prior studies. The greatest diversity of bacteria appeared in the Firmicutes, Actinobacteria, Proteobacteria, and Bacteriodetes. Well-represented genera included Staphylococcus, Streptococcus, Corynebacterium, Pseudomonas, Diaphorobacter, Methylobacterium, Flavobacterium, and Cloacibacterium. Across all organs, two amplicon sequence variants (ASVs) associated with the genera Diaphorobacter and Cloacibacterium appeared to be most abundant. In terms of the most prevalent ASVs, the alimentary canal, Malpighian tubules, and mandibular glands appeared to have similar complements of bacteria, with relatively few significant differences evident. However, aside from the Diaphorobacter and Cloacibacterium ASVs common to all the organs, the labial glands appeared to possess a distinctive complement of bacteria which was absent or poorly represented in the other organs. Among these were representatives of the Pseudomonas, Flavobacterium, Caulobacterium, Anaerococcus, and Methylobacterium. These results suggest that the labial glands present bacteria with different selective pressures than those occurring in the mandibular gland, Malpighian tubules and the alimentary canal. Given the documented effects that labial gland secretions and the gut microbiome can exert on host plant defenses, the effects exerted by the bacteria inhabiting the labial glands themselves deserve further study.


Subject(s)
Bacteria/classification , Digestive System/microbiology , Moths/microbiology , Salivary Glands/microbiology , Animals , Bacteria/isolation & purification , Gastrointestinal Microbiome , Malpighian Tubules/microbiology , Mandible/microbiology
19.
Sci Rep ; 10(1): 470, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949241

ABSTRACT

In this study, we describe a new in vitro tick feeding system that facilitates the study of ticks and tick-borne pathogens. To optimize the system, we used Dermacentor andersoni and Anaplasma marginale as a tick-pathogen interaction model. Ticks were fed on bovine blood containing 10-fold dilutions of the pathogen to determine the effect of dose on tick infection rate. After feeding on infected blood, ticks were transferred to uninfected blood to stimulate bacterial replication within the tick vector. During stimulation feeding, blood samples were collected daily to determine if infected ticks secreted viable A. marginale. The results demonstrated similar attachment rates between the first and second tick feeding. Tick midgut and salivary glands were infected with A. marginale. However, salivary gland infection rates decreased as the percentage of parasitized erythrocytes decreased during tick acquisition feeding. Bacteria recovered from the in vitro system were able to infect a naïve bovine host. Using the highly transmissible A. marginale St. Maries strain, we demonstrated that the artificial tick feeding system is a suitable tool to study tick-pathogen interactions and that A. marginale tick salivary gland infection is dose dependent. This work demonstrates the utility of an artificial tick feeding system to directly study the association between the number of acquired pathogens and transmissibility by ticks.


Subject(s)
Anaplasma marginale/physiology , Anaplasmataceae Infections/transmission , Arachnid Vectors/physiology , Cattle Diseases/transmission , Dermacentor/physiology , Feeding Behavior/physiology , Tick Infestations/veterinary , Anaplasmataceae Infections/microbiology , Animals , Cattle , Cattle Diseases/microbiology , Cattle Diseases/parasitology , Dermacentor/microbiology , Digestive System/microbiology , Digestive System/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology , Tick Infestations/microbiology , Tick Infestations/parasitology
20.
Ticks Tick Borne Dis ; 11(1): 101299, 2020 01.
Article in English | MEDLINE | ID: mdl-31542229

ABSTRACT

Vertically-transmitted bacterial symbionts are widespread in ticks and have manifold impacts on the epidemiology of tick-borne diseases. For instance, they may provide essential nutrients to ticks, affect vector competence, induce immune responses in vertebrate hosts, or even evolve to become vertebrate pathogens. The deer or blacklegged tick Ixodes scapularis harbours the symbiont Rickettsia buchneri in its ovarian tissues. Here we show by molecular, proteomic and imaging methods that R. buchneri is also capable of colonising the salivary glands of wild I. scapularis. This finding has important implications for the diagnosis of rickettsial infections and for pathogen-symbiont interactions in this notorious vector of Lyme borreliosis.


Subject(s)
Ixodes/microbiology , Rickettsia/physiology , Symbiosis , Animals , Proteomics , Salivary Glands/diagnostic imaging , Salivary Glands/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...